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Abstract

Harvested wildlife populations should ideally be monitored to inform harvest

policies and decision-making to help achieve management objectives. When the

age of harvested individuals can be obtained, these data (i.e., age-at-harvest data)

can be used to estimate trends of abundances, demographic rates, and harvest

probabilities by the statistical reconstruction of the living population. This

approach was developed primarily within the frequentist framework and

requires the inclusion of auxiliary data (e.g., radiotelemetry data). We devel-

oped a novel Bayesian hierarchical approach allowing the population recon-

struction from the definition of the species’ life cycle without auxiliary data.

The hierarchical model assumes that individuals are harvested from an open

population whose fluctuations result from demographic processes, and the def-

inition of a superpopulation composed of pseudo-individuals from which the

harvested population is drawn. We evaluated the ability of our model to esti-

mate abundances, survival, recruitment, and harvest probabilities based on

simulations guided by the demographic processes of a long-lived mammal pop-

ulation. We considered model performance across scenarios, including varying

age and temporal structures, superpopulation size, and prior information. We

showed how prior information selected based on life history characteristics

affects the accuracy of estimated parameters. We found that the model esti-

mates accurate demographic parameters and abundances when the

age-at-harvest matrix comprises more than two age classes. Furthermore, an

increase in demographic information (number of age groups and years)

increased the precision of the estimated parameters. We apply our model to a

population of harvested (2012–2021) white-tailed deer (Odocoileus virginianus)

and a mammalian carnivore, the fisher (Pekania pennanti), from Rhode

Island, USA. Our model estimated biologically realistic population size and

demographic rates for both species. Our approach provides robustness to track

the population abundance of harvested species through time and estimate fun-

damental demographic parameters. Such results can be used to monitor
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whether population objectives are being met and whether harvest policy

changes are required. Furthermore, this information can be critical for evalu-

ating the effect of harvest on population growth and projecting trajectories of

age-structured populations under different harvest scenarios. Therefore, our

framework can help to guide management decisions and species conservation.

KEYWORD S
age-at-harvest, Bayesian, demographic rates, fisher, harvest, life history, population size,
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INTRODUCTION

Robust inference to the population dynamics of harvested
wildlife populations is needed to inform harvest manage-
ment strategies (Nichols & Williams, 2006). Understanding
the effects of harvest on the growth and viability of a pop-
ulation is essential to preserving a fluctuating population
size that allows for sustainable harvest (Lande et al., 2003;
May et al., 1978). Maintaining populations at a sustainable
population size is necessary to enable their harvest and pre-
vent overexploitation or the local extinction of the harvested
species (Lande et al., 1995). Limiting the size of wildlife
populations below their ecological carrying capacities can
also be necessary for conserving ecosystems (Sinclair, 1997).
Besides, environmental variations can influence a popu-
lation’s mortality and reproduction rates, leading to fluc-
tuations in the population growth rate (May, 1973).
Indeed, fluctuations in population size are driven by
underlying interactions among factors, such as population
density, weather, and the population structure (Lande
et al., 2003). Also, these interactions can introduce heteroge-
neity in vital rates that can impact population dynamics
(Coulson et al., 2001). Moreover, the associated effects of
harvest and stochasticity in environmental conditions can
also affect vital rates, which can reflect in the population
structure and dynamics (Stenseth et al., 2022).

Wildlife management agencies manage the harvest of
game species by making decisions to meet short- and
long-term population objectives. It is critical to consider
the species’ ecology and have a thorough knowledge of
its population dynamics when making decisions about
the harvest of wild animal populations (Beddington &
May, 1977; Bunnefeld & Keane, 2014; Lande et al., 1997).
Ideally, a probabilistic monitoring strategy should relate
population measurements to management objectives,
and stakeholders’ interest and engagement with the spe-
cies should be clearly understood. Effective harvest man-
agement decisions require observational approaches that
enable management processes to integrate an understand-
ing of the population dynamics process and the effects of
management actions over time (adaptive management)

(Gerber & Kendall, 2018; Williams, 2011). To this aim,
managers must have affordable and logistically feasible
monitoring options.

As part of population monitoring and management
programs, age-at-harvest data of wild animal populations
are often collected because it is commonly a priority
of state management agencies and does not require inten-
sive and extensive sampling (Skalski et al., 2005).
Age-at-harvest data can be regarded as counts of the true
age-structured population. These data can be summa-
rized in an age-at-harvest matrix, where on the diagonals,
one can find information about the cohort that has been
harvested through the years (Appendix S1: Figure S1).
These data can be viewed as finite realizations of stochas-
tic demographic processes that contain information
about the dynamics and size of the population. From
age-at-harvest data, statistical reconstruction population
models provide a way to estimate demographic parame-
ters, such as survival and harvest probability, which are
necessary to explain the variation in age-at-harvest data
over time (Gove et al., 2002). Most applications of this
approach use a frequentist likelihood function, which
requires the integration of auxiliary data (e.g., radiote-
lemetry data, independent estimates of abundances and
survival) to reconcile parameter redundancy and estimate
unique demographic parameters (Clawson et al., 2017;
Gove et al., 2002; Skalski et al., 2005). However, there
may be situations where auxiliary data are lacking (Conn
et al., 2008).

To overcome this issue, we develop a novel Bayesian
model that provides flexibility in integrating information
to resolve the identifiability of model parameters. The
applicability of Bayesian methods in problems of natural
resources management and conservation has been
recognized previously (Ellison, 2004; Wade, 2000). We
integrate species life history information by defining
informative priors on demographic parameters to elimi-
nate the need for auxiliary data (Lemoine et al., 2016). In
addition, it is preferable to adapt previous data from pre-
vious research and literature rather than to borrow spe-
cific data from another population than the one that is
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being studied (McCarthy & Master, 2005). Even informative
priors can still be diffuse but are biologically realistic,
which provides little information but as the benefit of
reconciling redundant parameters that are otherwise not
separately estimated (Catchpole & Morgan, 1997). Adding
logical biological realm should be a model goal and not
thought of as bad. Several ecological studies have shown
that prior knowledge can increase estimator precision
without compromising accuracy (Morris et al., 2015).
Non-informative priors can promote poor statistical prac-
tices and leave the full potential of the Bayesian analysis
framework, which is to explicitly incorporate prior
research and expertise into new science, unrealized in
ecological applications (Banner et al., 2020; Hobbs &
Hooten, 2015; Rodhouse et al., 2019). Choosing default
priors (i.e., uninformative priors) for ecological models
can result in inefficient conservation and management
decisions for species of interest or concern (Banner
et al., 2020; Dorazio & Johnson, 2003). Therefore, in this
study, we propose that uncertainty about vital rates can
be taken into account by defining informative priors
based on the life history of the studied species and recon-
ciling redundant parameters that are otherwise not
separably estimable without additional data that may not
be available for the population being studied. To evaluate
the performance of our novel model, we perform an exten-
sive simulation study composed of different scenarios that
vary in terms of superpopulation size, the amount of demo-
graphic information, and prior information.

From our model, we reconstruct the population of
harvested white-tailed deer (Odocoileus virginianus) and
fisher (Pekania pennanti) in Rhode Island, USA. The
white-tailed deer is one of the most harvested big game
species in the United States, leading to important finan-
cial resources for managing game and other nongame
species (Lueck, 2000). The fisher have experienced signif-
icant range contraction since the late 1800s. Protective
measures, translocation efforts, and reforestation of agri-
cultural land have enabled the fisher to recolonize their
range in eastern North America (LaPoint et al., 2015).
Increasing deer populations can have environmental
implications through the degradation of the vegetation and
the damage of habitats of other species (Hanberry, 2021)
as well as public general consequences such as road colli-
sions (Farrell & Tappe, 2007) and transmission of dis-
eases such as Lyme diseases to humans (Levi et al., 2012).
Differently, fisher populations can decrease quickly if
their habitat is degraded (Powell, 1993), which can dis-
rupt the functioning of their ecosystem as mesopredators
are essential drivers of ecosystem function (Roemer
et al., 2009). Also, variations in life history traits are
much larger across species than among individuals and
can be represented by the slow–fast continuum of life

history strategies (Pianka, 1970; Stearns, 1992). Ungulates
are “slow” mammals having few offspring and higher sur-
vival rates, while mesocarnivores are relatively “fast”
mammals with short lifespans (Heppell et al., 2000).
Therefore, we predict that the white-tailed deer’s juvenile
and adult survival will be higher than those of the fisher.
Both species are harvested and should be monitored to
ensure that the population size remains stable and can
continue to be harvested. The objectives of this study
are (1) to develop a model and reconstruct a population
without auxiliary information but instead by incorporat-
ing biologically reasonable information to reconcile
parameters; (2) evaluate the model by different scenar-
ios to understand its performance regarding accuracy
and precision; and (3) apply the model to monitor the
trends and demographic parameters of the deer and
fisher.

MATERIALS AND METHODS

Definition of the statistical population
reconstruction model

We define our model by considering an observed
harvested animal as a captured individual from an open
population (Seber, 1982). We link the demographic pro-
cess to the annual abundance (Nt) in year t through sur-
vival and recruitment probabilities that change the state
of N (Figure 1). As the size of the living population is
unknown, we introduce a superpopulation of M > >N
individuals where M is fixed a priori for all the years
of the study period (Royle & Dorazio, 2008, 2012;
Schwarz & Arnason, 1996). We added M −n zero histo-
ries to the data set comprising n observed individuals
(Royle & Dorazio, 2012). This is referred to as data aug-
mentation and is widely applied in fitting hierarchical
models (Royle & Dorazio, 2012). See Appendix S1 for a
schematic description of the data augmentation proce-
dure for age-at-harvest data. We assume that the popula-
tion is harvested T years yielding n unique harvested
individuals. We proceed to data augmentation from a
cohort (see Appendix S1: Figures S1–S3). A cohort is
represented by yi,t,a ¼ yi,1,1,…,yM,T,A where yi,t,a ¼ 1 if indi-
vidual i is harvested during harvesting year t and 0 other-
wise. We decompose the life cycle of the population,
where zs i, t,að Þ is the latent individual i at year t in sum-
mer before winter survival and zh i, t,að Þ represents the
latent individual i at year t after winter survival. For t¼ 0
and age= a, we define zs as an individual having the
probability of being recruited before the summer from
the superpopulation M with a recruitment rate γ at year t
such that

ECOSPHERE 3 of 17

 21508925, 2024, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4878 by C

olorado State U
niversity, W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



zs i,0,að Þ�Bern γtð Þ: ð1Þ

Individuals zh of age 0 can survive after winter with a
probability of survival ϕ0 (i.e., juvenile survival) as

zh i,0,að Þ�Bern ϕ0zs i,0,að Þð Þ: ð2Þ

Observed harvested individuals at age 0 are defined as

y i,0,að Þ�Bern μhuntð Þ, ð3Þ

where the mean harvest probability μhunt ¼ zh i,1ð Þ× h
and h is the harvest probability which is constant over
individuals. If the harvest effort f at year t is available, it
can be included in Equation (3) such as
μhunt ¼ zh i, t,að Þ× h× f t. When a>0, the individuals zs
alive after harvest and before winter survival are defined as

zs i, t,a+1ð Þ¼ 1− y i,1ð Þð Þzh i, t,a+1ð Þ: ð4Þ

An individual alive in summer conditionally that they
survived to winter is defined as

zh i, t,a+1ð Þ�Bern ϕAzs i, t,a+1ð Þð Þ, ð5Þ

where ϕA is the adult survival probability for all ages
greater than (a>0), zh i, t,a+1ð Þ describes the status of
an individual i and takes on values 0,1ð Þ, “0” signifies
that the individual of the superpopulation M was not
harvested, and “1” signifies that an individual of the
superpopulation M has been harvested. Following
the life history of many long-lived mammals, adult sur-
vival is expected to be less variable than juvenile survival
(Fowler & Smith, 1981); therefore, we considered adult
survival (i.e., a>0). Then, an harvested individual is
expressed as

y i, t,a+1ð Þ�Bern μhuntð Þ, ð6Þ

where μhunt is the mean hunting probability. As there is
no information about juvenile survival in the upper diag-
onals of the age-at-harvest matrix, the individuals alive in
summer, zs, were defined as zs i, t,0ð Þ�Bern zs ×ϕ0 ×ϕn

A

� �
where n is the index number of the upper diagonal and
ϕ0 is the juvenile survival probability (Gove et al., 2002).

Age = 0 Age > 0

γ
Recruitment

��

��

��,0

1-��,0
μhunt

�0

Number of individuals 
    alive after winter

     Number of 
hunted individuals

     Number of 
pseudo alive individuals

deterministic
stochastic

Probability of 
  being shot

parameter

data

μhunt

��

���	

1-���	

��

��

����������	
����
�

Population - N

  Winter survival 
i.e., juvenile 
survival

No. of individuals
  alive before winter

F I GURE 1 Schematic representation of the statistical reconstruction population model (Equations 1–6). Rounded rectangles represent model

parameters and square rectangles represent data. Deterministic processes are represented by plain arrows, while stochastic processes are

represented by dotted arrows. We decompose the life cycle of the population, where the latent number of individuals alive before winter zs are

recruited with recruitment rate γ at year 1 and age 0 (see Equation 1). The individuals that survive through winter zh according to a juvenile

survival probability ϕ0 and then are harvested through the autumn with probability μhunt provide information on the population through the

age-at-harvest data. As we do not have direct information on the living population, we augmented the observed age-at-harvest data by

adding pseudo-individuals to the population N and created a superpopulation M from which the sampling is drawn. For subsequent years,

the individuals continue the life cycle with an adult survival ϕA until they are harvested yi,t,a or do not survive 1− yi,t,a.
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Under this model, we define Ns t,að Þ as the age-specific
population alive in summer, such that Ns t,að Þ¼PM¼1

i¼1 zs i, t,að Þ. The age-specific population alive after
winter survival is Nh t,að Þ¼PM¼1

i¼1 zh i, t,að Þ, and the esti-
mated age-specific harvested population
is Ph t,að Þ¼PM¼1

i¼1 μhuntzh i, t,að Þ.

Simulation study

We simulated the age-at-harvest data under the statistical
population reconstruction model (Equations 1–6), choos-
ing demographic parameters according to the knowledge
of the life history of long-lived mammals (Caughley,
1977). We defined six scenarios to evaluate the perfor-
mance of our model (Table 1). We considered our model
performance by varying age, temporal structure,
superpopulation size, harvest probability, the incorpora-
tion of the upper diagonal or not, and prior information
(Table 1 and Figure 2). We varied these different charac-
teristics because it can affect the performance of our
model. In scenario 1 and scenarios 4–6, we did not
include the age-at-harvest matrix’s upper diagonals
because of computation time limitations. In addition,
there is no information about the juvenile survival in
the upper triangle of the age-at-harvest matrix. We
expect that including prior information should improve
the accuracy of the posterior mean estimates. We inte-
grated the prior information from knowledge of the
characteristics of the life history of a long-lived mam-
mal by defining informative priors through the beta
distribution (see Figure 2 and Appendix S2). For sce-
narios 1–5, the age-at-harvest matrix was composed as
five age classes for five years. The scenarios were defined as
follows: Scenario 1—We varied the superpopulation size
with uninformative priors (Figure 2 and Appendix S2), and
the superpopulation sizes were set at M = 400 and 700.
Scenario 2—We investigated the effect of integrating the
upper diagonals on the parameter estimation, as
the upper diagonals of the age-at-harvest matrix contain

only information about the adult survival. The priors
were informative and the superpopulation size was set at
M¼ 400. Scenario 3—We integrated the upper diagonals,
the priors were informative (Figure 2 and Appendix S2),
and the superpopulation size was set at M¼ 400.
Scenario 4—We varied the harvest probability, and the
priors were uninformative. We set the harvest probability
at h¼ 0:4, h¼ 0:3, and h¼ 0:1, and the superpopulation
size was set at M¼ 400. Scenario 5—It is the same as sce-
nario 4, but the priors were informative (Figure 2 and
Appendix S2). Scenario 6—We varied the number of age
classes and years of the age-at-harvest matrix with infor-
mative priors (Figure 2 and Appendix S2). We varied the
number of age classes to be two, four, and eight
and the number of years to be five and ten. The
superpopulation size was set at M¼ 400. For all scenarios
(see Table 1), the recruitment γ was defined at 0:45, the
juvenile survival ϕ0 at 0.5, and the adult survival ϕA at
0.8. For scenarios 1, 2, 3, 5, and 6, the harvest probability
h was fixed at 0.2. The prior central tendency was on the
true parameter. Over the six scenarios, we defined 13 sim-
ulation cases, which were simulated one hundred times
each. For each simulated case, we fitted the Bayesian popu-
lation statistical reconstruction model (Equations 1–6). We
estimated the posterior medians to evaluate accuracy
(difference from truth) and precision (variation around
the median). We used Markov chain Monte Carlo
(MCMC) to estimate parameters via the software JAGS
(Plummer, 2003) in R (R Core Team, 2021) via the
R packages rjags (Plummer, 2022) and R2jags (Su &
Yajima, 2021). We checked for convergence using the
Gelman–Rubin statistics, R (Gelman et al., 2004),
where the model was assumed to have converged when
bR≤ 1:1. As running an extensive number of simulation
scenarios can take a relative long time, we run the simu-
lation on a high computing server, Linux CentOS7,
with a Dell PowerEdge R730xd Server and Dual Xeon
E5-2683 v4 processors, with 32 cores total (64 threads
total) and 64 GB RAM. The R code for simulating
an age-at-harvest matrix and fitting the model is

TAB L E 1 Characteristics of each simulated scenario (see Simulation study).

Uninformative
priors

Informative
priors

Superpopulation
size

Harvest
probability Composition age-at-harvest matrix

Upper
diagonal

Scenario 1 × ×

Scenario 2 × × ×

Scenario 3 × ×

Scenario 4 × ×

Scenario 5 × ×

Scenario 6 × ×
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accessible at https://doi.org/10.6084/m9.figshare.
22894874.v2 (Bellier et al., 2024).

White-tailed deer and fisher as case studies

White-tailed deer (hereafter, “deer”) are a common spe-
cies in Rhode Island (3147 km2), as well as throughout
the Northeastern United States (Appendix S3: Figure S1).
Their characteristic habitat are a mixed successional type
of forest (McShea, 2012). They can also be found in sub-
urban areas with mixed forest, shrubs, and lawns. Deer
in Rhode Island are hunted from mid-September to the
end of February. The data collected at deer check stations
during the hunting season included age, sex, antler
points, weight, antler beam measurements, and disease
surveillance (see Appendix S3 for more details on the
data collection). In total, we had information on individ-
uals harvested from 2012 to 2021 (Appendix S3:
Figure S2). The overall number of deer harvested was
21,704 (11,427 males, 10,676 females) from 2012 to 2022
(Appendix S3: Figure S2). Three age classes were defined
as age class 0.5, age class 1.5, and age class 2.5+
(Appendix S3: Figures S3 and S4). We estimated harvest
effort as the total annual harvest for all age classes
divided by the average annual harvest over the period
analyzed (ten years; Appendix S3: Figure S5) (Skalski
et al., 2007). We carried out the statistical population
reconstruction analyses separately for the males and the
females, as natural survival and harvest probability are
expected to differ for males and females (Van Deelen
et al., 1997). The definition of the priors of the vital rates
and harvest probability was based on the literature and
expert knowledge (Van Deelen et al., 1997; Whitlaw
et al., 1998), as specific survival rates data were absent in
Rhode Island (Appendix S2: Figure S3). The juvenile sur-
vival, that is, fawn survival has been estimated at 14%–87%
across eastern North America (Dion et al., 2020). Adult
survival varied widely in the literature. In Michigan’s
upper peninsula, survival rates were estimated at 0.81
(SE, 0.09) for adult females, 1.0 (SE, 0.05) for adult males
and yearling females, and 0.84 (SE, 0.07) for yearling
males (Van Deelen et al., 1997). In Oklahoma, adult male
survival was estimated at 0.86 (SE, 0.07) (Ditchkoff
et al., 2001) and in New Brunswick, adults were esti-
mated at 0.66 for males and 0.89 for females (Whitlaw
et al., 1998). Therefore, we defined the priors by

integrating life history of deer. Male harvest probability
were estimated to range between 0.1 and 0.5, and for
female, it varies from 0.1 to 0.3 (Ditchkoff et al., 2001;
Van Deelen et al., 1997; Whitlaw et al., 1998). We speci-
fied beta distributions for each vital rate and harvest
probability (Figure 3 and Appendix S2).

Fisher (P. pennanti) are carnivorous mammals of the
Mustelidae family, which were extirpated from Rhode
Island in the 18th and 19th centuries when forests were
being cleared for farmland. Fisher have made a return in
recent decades. Populations that persisted in Maine and
New Hampshire have been source populations for fisher
dispersal into Rhode Island (Buskirk et al., 2012). Fisher
can be found in various woodland habitats and tend to
avoid large areas without high overhead canopy closure,
like agricultural areas (Powell, 1993). Age-at-harvest data
of fisher were provided by the Rhode Island Department
of Environmental Management, Division of Fish and
Wildlife. Details about the data collection can be found
in the Appendix S3. The total number of individuals
harvested was 503 from 2013 to 2021 (Appendix S3:
Figure S6). We determined nine age classes of harvested
fisher from 2013 to 2021 (Appendix S3: Figure S7). The
harvest effort was estimated in the same way as previ-
ously mentioned for white-tailed deer (Appendix S3:
Figure S8). The definition of the priors of the vital rates
and harvest probability was based on results from empiri-
cal studies on life history of fisher (Appendix S3:
Figure S4). From estimated survival rates for established
fisher populations in North America (Buskirk et al., 2012;
Lewis et al., 2012), we defined the mean and levels of
uncertainties of the priors (Figure 3 and Appendix S2).

RESULTS

Simulation study

Scenario 1—With uninformative priors, we found that
increasing the superpopulation size M from 400 to 700
did not affect the estimation of the parameters (Figure 4,
box plots) as the distances between the true value and
the medians of the box plots remained the same. The
adult abundances, bNh, were precisely estimated for both
sizes of superpopulation (i.e., M= 400 and 700)
(Appendix S4: Figure S3). Scenarios 2 and 3—Including
the upper diagonals did not affect the estimation of the

F I GURE 2 Uninformative priors of the demographic rates represented by uniform distributions: recruitment (γ), juvenile survival (ϕ0),

adult survival (ϕA), harvest probability (h) and prior distributions for the demographic rates that integrates life history of a long-lived

mammal for the simulation study: recruitment (γ), juvenile survival (ϕ0), adult survival (ϕA), and harvest probability (h). The dotted line

represents the true simulated value. See Appendix S2 for the distributions parameters.
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demographic parameters whatever the information
included in the priors (Appendix S4: Figure S4, box
plots). Scenario 4—With a superpopulation of M¼ 400,
recruitment and juvenile survival estimates were increas-
ingly overestimated when the harvest probability
increased from 0.1 to 0.4 using uninformative priors.
Differently, the harvest probability, bh, was overestimated
when h¼ 0:1, accurately estimated when h¼ 0:3, and
slightly overestimated when h¼ 0:4 (Appendix S4:
Figure S5, box plots). Scenario 5—When using informa-
tive priors, the variability of the estimates was lower than
when the priors were non-informative (Appendix S4:
Figures S5 and S6, box plots). The recruitment and juve-
nile survival parameters were also increasingly
overestimated, and the adult survival was underestimated
when h¼ 0:4 (Appendix S4: Figure S6, box plots). The
harvest probability was slightly overestimated when
h¼ 0:1; the precision and accuracy were improved when
h¼ 0:3; when h¼ 0:4, the harvest probability was
underestimated (Appendix S4: Figure S6, box plots). The
precision of the abundance estimates was increased when
the harvest probability increased (Appendix S4:
Figures S7 and S8). Scenario 6—When using informative
priors along with an age-at-harvest matrix composed of
two age classes and five years, the recruitment, juvenile
survival, and harvest probability were overestimated
(Figure 5), while adult survival was underestimated.
Increasing the demographic information (i.e., age from
two to eight, years from two to ten) increased the recruit-
ment and juvenile survival accuracy. We obtained an accu-
rate estimation of recruitment and juvenile and adult
survival when the age-at-harvest matrix comprised eight
age classes and ten years (Figure 5). Increasing the number
of years improved the accuracy of the harvest probability.
The age class 0 abundance estimates were slightly
overestimated, whatever the number of age classes and
years (Figure 6). When there were more than two age clas-
ses, the abundance estimates for ages higher than zero were
accurately estimated (Figure 6).

Statistical reconstruction of white-tailed
deer and fisher populations

The number of harvested male deer decreased from 2012
and 2016 but increased from 2016 to 2021 (Appendix S3:
Figure S2). In 2012, 1203 males were harvested, and this

decreased to 936 in 2016. A peak was observed in the
number of harvested female deer in 2014, where 1332
females were harvested. After 2014, the number of
harvested female deer decreased to 935 in 2018 and
stayed stable (Appendix S3: Figure S2). The vital rate esti-
mates of male deer were relatively high, while the juve-
nile survival was lower than the adult survival, and the
harvest probability was also low (Appendix S5: Table S1
and Figure S1). The estimated male deer abundance
decreased until 2014, after which the abundance slightly
increased again and fluctuated around 10,320 individuals
until 2021 (Figure 7a). The number of individuals for age
class 0.5 stayed constant over the years. In age class 1.5,
abundance decreased from 2012 to 2013, then increased
slowly until peaking in 2019 and leveling back out until
2021 (Appendix S5: Figure S2). For the age class 2.5+, the
estimated abundance decreased from 2012 to 2014, then
increased until 2018 and fluctuated around 3,215 indi-
viduals until 2021 (Appendix S5: Figure S2). The esti-
mated number of harvested males decreased until 2018
and increased until 2021 (Appendix S5: Figure S3). The
observed and estimated number of harvested males had
the same trend. The estimated vital rates of female deer
were relatively similar to the males (Appendix S5:
Table S1 and Figure S4). The harvest probability was
slightly lower for females than for males (Appendix S5:
Table S1). The estimated abundance of female deer
slightly decreased over time (Figure 7b). The estimated
abundance of age class 0.5 and 1.5 was almost constant
over the years, and the abundance of age class 2.5+ fluc-
tuated around 3578 deer (Appendix S5: Figure S5). The
estimated number of harvested females decreased each
year until an increase during 2021 (Appendix S5:
Figure S6). As for the males, the observed and estimated
number of harvested females had the same trend.

The number of harvested fisher decreased over the
study period (2013–2021). In 2014, about 90 individuals
were harvested, which declined to 18 by 2021
(Appendix S3: Figure S6). There were nine age classes of
harvested individuals (Appendix S3: Figure S7). The most
abundant age classes were age class 0 and age class 1.
The number of harvested individuals in these classes
and in the oldest age classes decreased over time. In
the last three years of the study period, no individuals
were in the age classes above 4 years of age
(Appendix S3: Figure S7). The estimated juvenile sur-
vival ϕ0 was higher than the estimated adult survival ϕA

F I GURE 3 Prior distributions for the white-tailed deer population which integrated life history characteristics of the species:

recruitment (γ), juvenile survival (ϕ0), adult survival (ϕA), and harvest probability (h) and prior distributions for the demographic rates for

the fisher population: recruitment (γ), juvenile survival (ϕ0), adult survival (ϕA), harvest probability (h). See Appendix S2 for the

distributions parameters.
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(ĥ
)

R
ec

ru
itm

en
t (
�̂)

0.0

0.2

0.4

0.6

0.8

1.0

M
 =

 7
00

Ju
ve

ni
le

 s
ur

vi
va

l (
� 0^

)

A
du

lt 
su

rv
iv

al
 (
� A^

)

0.0

0.2

0.4

0.6

0.8

1.0

H
ar

ve
st

 p
ro

ba
bi

lit
y 

(ĥ
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F I GURE 4 Box plots of one hundred estimated means of recruitment bγ, juvenile survival bϕ0, adult survival bϕA, and harvest probability
bh when the priors were uninformative with an age-at-harvest matrix with five age classes and over five years, and a superpopulation of

M= 400 and 700. The plain black line indicates the median of the estimated mean values across one hundred simulations. The box

represents the lower quartile (0.25) and the upper quartile (0.75). The dashed line is the true value of the simulated parameters.

10 of 17 BELLIER ET AL.

 21508925, 2024, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4878 by C

olorado State U
niversity, W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



0.37

0.38

0.39

0.40

0.41

0.42

0.43

R
ec

ru
itm

en
t (
�̂)

0.48

0.49

0.50

0.51

0.52

0.53

Ju
ve

ni
le

 s
ur

vi
va

l (
� 0^

)

 

0.65

0.70

0.75

0.80

0.85

0.90

A
du

lt 
su

rv
iv

al
 (
� A^

)

 

0.16

0.18

0.20

0.22

0.24

H
ar

ve
st

 p
ro

ba
bi

lit
y 

(ĥ
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(Appendix S5: Table S1 and Figure S7). The estimated
number of individuals decreased in the first seven years
(Figure 7c). After 2019, the estimated abundance slightly
increased. The estimated number of individuals in age
class 0 decreased from 2013 to 2017 (Appendix S5:
Figure S8). For the age class 1, the estimated abundance
slightly reduced until 2017. The abundance remained
constant after 2017. In age class 2, a peak was observed
in 2014, then abundance decreased and fluctuated
around 20 individuals. In age class 3, the estimated abun-
dance slightly decreased over the study period. The esti-
mated number of harvested individuals peaked in 2014,
then declined the rest of the study period (Appendix S5:
Figure S9). The observed and estimated number of
harvested individuals had the same decreasing trend
(Appendix S5: Figure S9).

DISCUSSION

In this study, we propose a novel Bayesian model to statis-
tically reconstruct wildlife populations from age-at-harvest
data. From an extensive simulation study, we demon-
strated that our model provides a robust estimation of the
vital rates and abundances estimates. The age-at-harvest
matrix with the most age classes and years (i.e., eight age
classes and ten years) provided the most accurate esti-
mates of demographic rates, while the harvest probabilities
were slightly overestimated. We found that increasing the
demographic information by increasing the number of
age classes and the number of years of the study period
increased the accuracy of the parameter estimates. We
showed that integrating life history characteristics via
prior information increased the parameter estimates’
accuracy, demonstrating this modeling framework’s reli-
ability and utility. We make evident that defining model
from expert knowledge and empirical studies is useful to
improve precision and accuracy of demographic parame-
ters and population size. Thereby, we demonstrate that
integrating empirical results and expert knowledge within
Bayesian model can be helpful to inform natural resource
management and conservation (Dorazio & Johnson, 2003;
Kuhnert et al., 2010).

To our knowledge, our study is the first demonstrat-
ing that developing a statistical reconstruction model
within a Bayesian framework which does not depend on
the inclusion of auxiliary data is possible. Likelihood

models for age-at-harvest data are estimable but need
strong assumptions or auxiliary data information about
vital parameters. Our Bayesian model provides flexibility
in how the data are integrated and allows us to account
for demographic stochasticity. Additionally, an added
benefit to choosing more informative priors is that it
reduces computational time by limiting the parameter
space an MCMC algorithm needs to explore (Banner
et al., 2020). A few other studies have used a Bayesian
approach to fit age-at-harvest data, but a bit differently.
For example, Allen et al. (2018) developed a Bayesian
state-space model using age-at-harvest data to estimate
abundances of black bears (Ursus americanus) in
Wisconsin, USA. Their model does not include a proba-
bilistic and hierarchical definition of the latent vari-
ables, which allowed us to estimate the harvest
probability directly. Their model also relies strongly on
only prior information for many parameters. Conn
et al. (2008) developed a Bayesian model for wildlife
age-at-harvest data applied to black bears, which inte-
grated mark-recovery data to provide accurate estimates of
abundance and vital rates. Lastly, Skelly et al. (2023) devel-
oped a Bayesian model to estimate survival by age classes
from age-at-harvest data, but the model does not estimate
abundance or other demographic parameters.

We found the estimates of vital rates of the
white-tailed deer were consistent with estimates obtained
for black-tailed deer (Odocoileus hemionus columbianus)
in western Cascades of Washington, USA, for which the
survival was 0.72 and harvest probability 0.16 (Skalski
et al., 2012). We found that the total abundance of deer
in Rhode Island averaged μN ¼ 21,200. Specifically, we
found that males and females were similar at an average
of μN ¼ 10,362 and 10,387. Overall, we estimated the deer
density over Rhode Island land to be 8.20 deer/km2

(7.93–8.29, 95% credible interval) (Appendix S5: Table S4).
This result is consistent with a study that estimated deer
density between 7 and 11 deer/km2 in Rhode Island in
2008 (Walters et al., 2016). This density is above the
recommended deer density of 4–7 deer/km2 (DeCalesta,
2017). Above this density, deer can adversely affect the for-
est ecosystems by influencing their plant composition and
abundances (Hanberry & Abrams, 2019). For the fisher,
our estimated vital rates were in line with results from
telemetry studies in Maine, USA, where the adult female
survival was estimated to be 0.65 (Paragi et al., 1994).
Similarly, fisher survival has been estimated to be 0.55 in

F I GURE 5 Box plots of one hundred estimated means of recruitment bγ, juvenile survival bϕ0, adult survival bϕA, and harvest probability
bh when the priors were informative with different age-at-harvest matrix compositions. The age-at-harvest matrices were composed of two

ages, four ages, and eight ages classes with five and over ten years. The plain black line indicates the median of the estimated mean values

across one hundred simulations. The dashed line is the true value of the simulated parameters.
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Olympic National Park, Washington, and 0.61 in Sequoia
national forest, California, USA (Buskirk et al., 2012). The
overall mean abundance of fisher over the study period
was 244 individuals, making a density of 0:094 km2 indi-
viduals over land of Rhode Island (Appendix S5:
Table S4). This result is consistent with studies on fisher

in California and Oregon, USA, where the density is esti-
mated to be between 0:079 km2 individuals and
0:124 km2 individuals in Southern Sierra (Sweitzer
et al., 2015). Posterior predictive distributions suggested
that the fisher model led to a better fit of the data than
the deer model. These differences in age structure and
posterior predictive distribution may be because the com-
position of the age-at-harvest data may not represent the
living population of deer. Indeed, the number of individ-
uals in each age class might reflect hunter selectivity,
age- and sex-specific vulnerabilities to harvest, or the
effect of harvest regulations rather than population
trends (Rosenberry et al., 2004). Since trapping is a less
selective harvest technique than hunting, this may be
why the fisher model fit the data better.

Through an extensive simulation study, we demon-
strate that our model provides reliable estimations of vital
rates and population size. In addition, our framework
enabled us to estimate demographic rates and population
size of two species with different life history characteris-
tics, which constitute evidence of its robustness. Our
approach considers the species’ life cycle and history with-
out requiring auxiliary data. Such an approach adds flexi-
bility to tracking population abundance through time and
could help evaluate population trends and the impact of
policy change. An unstable population age structure can
result in varying short-term dynamics that can increase or
decrease population size (Koons et al., 2007). Further,
analyses of the short-term dynamics of harvested
populations can be critical for understanding the effect
of harvest on population growth and projecting trajecto-
ries of age-structured populations better under different
harvest scenarios (Hauser et al., 2006). Such analyses
are essential to understanding the impacts of transient
dynamics (Hastings, 2004). We hope our approach con-
tributes to a better understanding of population dynam-
ics, which is critical in managing harvested wildlife.
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